• slide-backgroPCOR

    Projects

    CCUS Projects in the PCOR Partnership region

The PCOR Partnership region has significant geologic resources available to store the billions of tons of CO2 emissions that may require mitigation. The PCOR Partnership has developed and has carried out a variety of field projects to demonstrate and optimize practical and environmentally sound geologic CO2 storage and terrestrial sequestration in this region.

about-image

Aquistore Project

SOUTHEASTERN SASKATCHEWAN, CANADA
CO2 INJECTION: AROUND 2300 TONS (2100 METRIC TONS) PER DAY

The Aquistore project was designed to inject anthropogenic CO2 into a sandstone layer 3400 meters (11,000 feet) below ground. The source for the CO2 is the SaskPower Boundary Dam Carbon Capture Project, which involves the first-ever commercial-scale capture of CO2 from a coal-fired power plant. In February 2017, the Aquistore Project reached a milestone of 100,000 metric tons of CO2 injected into a deep sandstone layer.

ACTIVE AS OF FEBRUARY 2021


about-image

Basal Cambrian Characterization Project

1.34 MILLION KM2 OF THE U.S. AND CANADIAN BORDER

The Basal Cambrian project was a 3-year binational effort between the United States and Canada. The goal was to characterize a 1.3-million-km2 area of the Cambro-Ordovician Saline System (COSS) across the northern Great Plains–Prairie region of North America to determine its CO2 storage resource. The results of this study show the COSS to be a large and viable target for the long-term geologic storage of anthropogenic CO2.

COMPLETED 2014
about-image

Bell Creek Integrated EOR and CO2 Storage Project

SOUTHEASTERN MONTANA, UNITED STATES
CO2 INJECTION: AROUND 1.1 MILLION TONS (1 MILLION METRIC TONS) PER YEAR

The Bell Creek project is demonstrating that commercial EOR operations can safely and cost-effectively store regionally significant amounts of CO2. Bell Creek Field owner, Denbury Onshore, LLC, expects to recover approximately 40–50 million barrels of incremental oil through CO2 injection.

ACTIVE AS OF FEBRUARY 2021


tab-image

CarbonSAFE Nebraska

WESTERN NEBRASKA, UNITED STATES
POTENTIAL SIZE: 55 MILLION TONS (50 MILLION METRIC TONS) OF CO2

This prefeasibility study investigated the technical, geographic, regulatory, socioeconomic, and financial viability of capture and geologic storage of CO2 from Nebraska Public Power District’s Gerald Gentleman Station. This Phase I study was part of DOE’s nationwide, four-phase CarbonSAFE Initiative designed to support implementation of commercial-scale CCUS by 2025

COMPLETED JUNE 2018
about-image

Fort Nelson CCUS Feasibility Project

NORTHEASTERN BRITISH COLUMBIA, CANADA

As part of a larger effort to investigate CO2 mitigation strategies, the Fort Nelson CCS Feasibility Project investigated the technical and economic feasibility that CO2 from a commercial natural gas-processing facility can be safely and cost-effectively stored in a deep carbonate saline formation. At the time of the research, Spectra Energy’s Fort Nelson natural gas-processing facility was the largest point source of CO2 in the province. Although the site is an exceptional candidate for commercial-scale, long-term geologic storage of CO2, the economics of carbon management in British Columbia did not support the financial case for moving forward with a CCS project at the time of the study.

COMPLETED 2012
tab-image

Lignite Field Validation Test

NORTHWESTERN NORTH DAKOTA, UNITED STATES
CO2 INJECTION: 90 TONS (82 METRIC TONS) OF CO2

A small-volume CO2 storage test was completed in a lignite coal seam in Burke County, North Dakota, to determine the fate of CO2 injected into a representative lignite coal seam and to investigate the potential for enhanced coalbed methane (ECBM) production. This effort was the first field project to inject CO2 into a deep, unminable lignite seam in the Williston Basin and successfully used a reservoir saturation tool in conjunction with crosswell seismic to help identify the location of the CO2 plume in the lignite seam.

COMPLETED OCTOBER 2013
about-image

Midcontinent CarbonSAFE

KANSAS AND NEBRASKA, UNITED STATES
POTENTIAL SIZE: 55 MILLION TONS (50 MILLION METRIC TONS) OF CO2

This feasibility project evaluated potential stacked storage sites in south-central Nebraska and southwest Kansas as a Phase II effort in DOE’s nationwide, multiyear CarbonSAFE initiative designed to support implementation of commercial-scale carbon capture and storage projects by 2025. The project investigated the concept of gathering CO2 from eastern and central NE and transporting it southwest along a hypothetical CO2-source collection corridor into central KS.

COMPLETED 2020
about-image

Northwest McGregor Field Validation Test

NORTHWESTERN NORTH DAKOTA, UNITED STATES
CO2 INJECTION: 440 TONS (400 METRIC TONS) OF CO2

A small-volume, short-term CO2 huff ’n’ puff (HnP) test was conducted in an oil well producing from a deep limestone (carbonate) layer in the Williston Basin to evaluate the potential for CO2 storage and EOR at depths greater than 2000 meters. This was the deepest HnP at the time and more than double the preinjection oil production rate was observed over the 4 months the well was monitored following HnP treatment.

COMPLETED 2009
about-image

Project Tundra CCS Project

CENTRAL NORTH DAKOTA, UNITED STATES
PROJECT SIZE: 4 MILLION METRIC TONS CAPTURED PER YEAR

Project Tundra is a bold initiative to build the world's largest carbon capture facility in North Dakota. Innovative technologies are being designed to capture 90% of the CO2 produced at the Milton R. Young Station. This capture rate is the equivalent to taking 800,000 gasoline-fueled vehicles off the road. North Dakota-based Minnkota Power Cooperative is leading the project, along with research support from the Energy & Environmental Research Center through DOE's CarbonSAFE initiative.

ACTIVE AS OF FEBRUARY 2021


Learn More About Project Tundra Learn More About North Dakota CarbonSAFE

about-image

Quest

EAST-CENTRAL ALBERTA, CANADA
CO2 INJECTION: 1.1 MILLION TONS (1 MILLION METRIC TONS) PER YEAR

Quest is a fully integrated CCS project—capturing, transporting, injecting, storing, and monitoring CO2. This 98% pure CO2 is transported safely by pipeline to an injection location north of Shell Scotford and stored permanently more than 2 kilometers deep under thick layers of impermeable geologic formations. In less than 5 years, Quest had officially captured and stored more than 5 million metric tons of CO2 deep underground.

ACTIVE AS OF FEBRUARY 2021


Learn More About Quest

about-image

Red Trail Energy CCS Project

SOUTHWESTERN NORTH DAKOTA, UNITED STATES
POTENTIAL SIZE: 180,000 TONS (160,000 METRIC TONS) OF CO2

Since late 2016, this project has been assessing the technical and economic feasibility of integrating CCS with ethanol production to reduce net CO2 emissions. Recent activities include equipment contracting, public outreach, and submission of the first North Dakota CO2 Storage Facility Permit application, submitted in February 2021.

ACTIVE AS OF FEBRUARY 2021


Learn More About Red Tail Energy
about-image

SaskPower Boundary Dam Carbon Capture Project

SOUTHEASTERN SASKATCHEWAN, CANADA
CO2 INJECTION: UP TO 1.1 MILLION TONS (1 MILLION METRIC TONS) PER YEAR

In the fall of 2014, Boundary Dam Power Station in Estevan, Saskatchewan, became the first generating station in the world to successfully use CCS technology on one of its full-scale units. The facility can capture up to 1 million metric tons of CO2 emissions per year while simultaneously removing sulfur and other pollutants. The captured CO2 either goes to oil fields for EOR or is injected into a 3400-m-deep sandstone formation through the Aquistore Project. In both cases, the CO2 is permanently stored deep underground. After 6 years of operation, the facility had captured more than 3.7 million metric tons of CO2.

ACTIVE AS OF FEBRUARY 2021


Learn More About Boundary Dam
about-image

Terrestrial Field Validation Test

PRAIRIE POTHOLE REGION, UNITED STATES
CO2 STORAGE: 1.1 TONS OF SOIL ORGANIC CARBON PER ACRE PER YEAR (0.4 METRIC TONS PER HECTARE)

This project was undertaken to develop the technical capacity to systematically identify, develop, and apply alternate land use management practices to the Prairie Pothole Region (PPR) ecosystem that will result in GHG reductions. The project demonstrated that restoration of previously farmed wetlands results in the rapid replenishment of soil organic carbon lost to cultivation.

COMPLETED 2009
about-image

Weyburn-Midale CO2 Project

SOUTHEASTERN SASKATCHEWAN, CANADA
CO2 INJECTION: 2.2 MILLION TONS PER YEAR (2 MILLION METRIC TONS)

The Weyburn and Midale oil fields in the southern portion of Saskatchewan are the sites of major commercial EOR operations using CO2. Since 2000, industrial-grade CO2 has traveled 205 miles (330 km) by pipeline from the Great Plains Synfuels Plant in Beulah, North Dakota, to the Weyburn and Midale oil fields. Since October 2014, CO2 also began coming from SaskPower’s coal-fired Boundary Dam Power Station. As of February 2017, the Weyburn project had safely injected approximately 30 million metric tons of CO2.

ACTIVE AS OF FEBRUARY 2021


Learn More About Weyburn–Midale
about-image

Wyoming CarbonSAFE

NORTHEASTERN WYOMING, UNITED STATES
POTENTIAL SIZE: 55 MILLION TONS OF CO2 (50 MILLION METRIC TONS)

The Wyoming CarbonSAFE project is investigating safe, permanent geologic storage of CO2 from Basin Electric Power Cooperative’s coal-based Dry Fork Station in Gillette, Wyoming. Researchers have analyzed geologic samples and used well data to refine geologic computer models to test CO2 injection and storage simulations. Work is addressing all aspects of CO2 sequestration, including initial site characterization, facility design, legal and regulatory issues, providing information about carbon management, and other challenges.

END DATE OF DECEMBER 2023


Learn More About Wyoming CarbonSAFE

about-image

Zama Field Validation Test

NORTHWESTERN ALBERTA, CANADA
CO2 INJECTED: 93,000 TONS (85,000 METRIC TONS) THROUGH MAY 2012

The Zama oil field in northwestern Alberta, Canada, was the site of acid gas injection for the simultaneous purpose of EOR, H2S disposal, and sequestration of CO2. The PCOR Partnership conducted MVA activities at the site, while Apache Canada Ltd. led the injection and hydrocarbon recovery processes.

COMPLETED 2012