Plains CO$_2$ Reduction (PCOR) Partnership

ATLAS

5th EDITION REVISED

2017

Compiled and Created by
Wes Peck, Principal Geologist
Earl Battle, Graphic Designer
Megan Grove, GIS Analyst
Kyle Glazewski, Senior Analyst

Manuscript Editor
Joyce Riske, Principal Editor, Editing and Graphics

PCOR Partnership Management
Charles Gorecki, Director of Subsurface R&D
Ed Steadman, Vice President for Research
John Harju, Vice President for Strategic Partnerships

Published by the
Energy & Environmental Research Center (EERC)
2017

The PCOR Partnership is a group of public and private stakeholders working together to better understand the technical and economic feasibility of storing CO$_2$ emissions from stationary sources in the central interior of North America. The PCOR Partnership is led by the EERC at the University of North Dakota and is one of seven regional partnerships through the U.S. Department of Energy’s Regional Carbon Sequestration Partnership initiative.

Plains CO$_2$ Reduction (PCOR) Partnership

5th EDITION REVISED

2017

Compiled and Created by
Wes Peck, Principal Geologist
Earl Battle, Graphic Designer
Megan Grove, GIS Analyst
Kyle Glazewski, Senior Analyst

Manuscript Editor
Joyce Riske, Principal Editor, Editing and Graphics

PCOR Partnership Management
Charles Gorecki, Director of Subsurface R&D
Ed Steadman, Vice President for Research
John Harju, Vice President for Strategic Partnerships

Published by the
Energy & Environmental Research Center (EERC)
2017

The PCOR Partnership is a group of public and private stakeholders working together to better understand the technical and economic feasibility of storing CO$_2$ emissions from stationary sources in the central interior of North America. The PCOR Partnership is led by the EERC at the University of North Dakota and is one of seven regional partnerships through the U.S. Department of Energy’s Regional Carbon Sequestration Partnership initiative.
Notice

This atlas was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of its employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Printed in the United States of America and available from:
Energy & Environmental Research Center (EERC)
Grand Forks, ND 58202

This product was prepared by the EERC, an agency of the University of North Dakota (UND), as an account of work sponsored by the U.S. Department of Energy and the PCOR Partnership. Because of the research nature of the work performed, neither the EERC nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement or recommendation by the EERC.

© 2017 University of North Dakota Energy & Environmental Research Center

Permission is granted to copy and distribute information for noncommercial use as long as the content remains unaltered and credit is given to UND EERC. To commercially publish any of the materials included in this publication, contact the EERC to obtain written permission. Please write Nicole Massmann, Director of Communications, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018.
Acknowledgments

This atlas was made possible through the contributions and efforts of numerous groups from throughout the United States and Canada. We would like to acknowledge the PCOR Partnership partners for their efforts in providing much of the information used for the assessments and for cooperating with us in producing a regional portfolio for public use. We also extend our appreciation to the various federal, state, and private organizations and university groups for their cooperation in our search for data.

Several members of the PCOR Partnership research team from the EERC provided valuable input to this effort through the production of technical publications, presentations, and outreach materials. This body of work provided the foundation from which this atlas was created.

The following EERC staff focused on the execution of PCOR Partnership efforts in 2015 and 2016. It was through their creative energy and collective efforts that the production of this atlas was possible:

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. DE-FC26-05NT42592.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Chapter 1: The Challenge</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2: Carbon Management</td>
<td>19</td>
</tr>
<tr>
<td>Chapter 3: The PCOR Partnership</td>
<td>45</td>
</tr>
<tr>
<td>Chapter 4: Regional Characterization</td>
<td>55</td>
</tr>
<tr>
<td>Chapter 5: Field-Based Activities</td>
<td>69</td>
</tr>
<tr>
<td>Chapter 6: CCS Deployment</td>
<td>103</td>
</tr>
<tr>
<td>Chapter 7: The Path Forward</td>
<td>111</td>
</tr>
<tr>
<td>Conversion Factors</td>
<td>119</td>
</tr>
<tr>
<td>Further Sources of Information</td>
<td>120</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>122</td>
</tr>
<tr>
<td>Photo and Image Credits</td>
<td>123</td>
</tr>
<tr>
<td>References</td>
<td>124</td>
</tr>
<tr>
<td>For More Information</td>
<td>126</td>
</tr>
</tbody>
</table>
Many changes have been observed in the global climate over the past century. There is growing concern that human activity, such as the use of fossil fuels for energy production, may be affecting the climate. Other significant potential impacts come from deforestation, agricultural practices, and industrial processes.

One of the ways that we can significantly reduce human-made greenhouse gas (GHG) emissions is by using carbon capture and storage (CCS). CCS offers a promising set of technologies through which carbon dioxide (CO$_2$) can be captured from large stationary sources and permanently stored underground.

Within central North America, the Plains CO$_2$ Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center (EERC), is investigating long-term CO$_2$ storage technologies to provide a safe, effective, and efficient means of managing CO$_2$ emissions. The PCOR Partnership is part of the U.S. Department of Energy (DOE) National Energy Technology Laboratory’s (NETL’s) Regional Carbon Sequestration Partnership (RCSP) initiative. The goal of this joint government–industry effort is to determine the most suitable technologies, regulations, and infrastructure needed for CCS.

This atlas provides a regional profile of CO$_2$ sources and potential CO$_2$ storage locations across the nearly 3.6 million km2 of the PCOR Partnership region. In the 13 years since the RCSP initiative was founded, a wealth of new information about CCS has emerged. This fifth edition provides an up-to-date look at PCOR Partnership activities, to include additional regional characterization and updates on full-scale demonstration projects. Additional background information to support CCS is included to give the reader a better picture of how CCS plays a role in addressing concerns about climate change while allowing future energy needs to be met.