CRITICAL MINERALS FROM LIGNITE: THE PROCESS AND PRODUCTS

May 25, 2023
THANK YOU TO OUR SPONSORS!
Webinar Series Events

Critical Minerals: What, How, Why All the Hype?
September 21, 2022

Today’s Critical Mineral Technologies and How to Move Forward
November 30, 2022

Why Do Critical Mineral Business in the Williston Basin?
Our Strengths, Our Assets, Our Needs
January 11, 2023

Critical Minerals from Lignite: The Process and Products
May 25, 2023
CRITICAL MINERALS FROM LIGNITE:
THE PROCESS AND PRODUCTS

May 25, 2023

Nolan Theaker, Senior Research Manager
Critical Minerals, Institute for Energy Studies
Defining Critical Minerals

Critical Minerals

Rare-Earth Elements (REEs)
- Not rare but found together
- Chemically similar and difficult to separate
- Each with a different use

Critical Minerals (CMs)
- Catch-all term for the critical minerals that are not REEs
- No other common factor
Critical Minerals Play a Vital Role in Our Modern Economy and National Security
More than 80% of U.S. critical minerals are imported.
Elements with Greatest Potential to Contribute to the Williston Basin Market
Developing New Sources and Innovative Ways to Extract CMs and REEs

Existing Lignite Coal Mines

Produced Water

Coal Ash

ND Shales: Pierre, Niobrara, Upper and Lower Bakken

Deep Unminable Coal Seams by In Situ Extraction
Business Findings and Takeaways

• Regional industries
 – End users of final products
 – Defining business model

Mountain Pass REE Mine, California
Goals of This Webinar

What does it take to process REEs and CMs from lignite?

- What methods?
- How many steps and involved parties?
- Where do handoffs exist?
ENTERING THE FLOWCHARTS
Preview: What Is the Overall Picture?

Coal Utilization → Carbon Products and Power → REE Magnets and Other

Lignite at Margins → REE Mixed Concentrate → REE Refining

REE Refining → CM Concentrates → CM Refining → Semiconductors

Semiconductors → REE Processing → Semiconductors

Sorbent/Fertilizer → Li-Ion Battery Components → Low-Emission e⁻

Direct Sale → Wind Power Motors → Disk Drives → Electric Vehicles

Gyrosopes → MRI and Diagnostics

Europium for Phosphors → Gadolinium for X-Rays

Sc/Al Alloys for Aerospace → YSZ Ceramics

Metal for Semiconductors → Cloride for Fiber Optics → Semiconductor Wafers
Diving into Mixed REE Concentrate

Mixed REE Concentrate

Lignite at Margins → Physical Processing → Overburden Rock and Clays

Chemical Processing → CM-Bearing Solution

CM-Depleted Lignite → Impurity Purification

Other Coal Uses → REE Separation

CM Refining → CM Separation

Solution Impurities

MREO Concentrate → Wastewater

Other Coal Uses

CM Refining

Wastewater

Critical Challenges. Practical Solutions.
How Does This Look?

60%–90% Pure Mixed REOs

Image credit: UND Institute for Energy Studies
REE Refining and Processing

- Lignite at Margins
 - REE Mixed Concentrate
 - Refining
 - HREE Concentrate
 - Medical/Defense Applications
 - SEG Concentrate
 - SEG Purification
 - LREE Concentrate
 - La/Ce Disposal or Sale
 - Separation and Processing
 - Scandium/Yttrium
 - Scandium Metal for Alloying
 - Yttrium Oxide for Ceramics
 - YSZ Ceramics
- Magnet REEs
 - Metallization and Alloying
 - Magnet Production
- Scandium/Yttrium
 - Scandium/Al Alloys for Aerospace
- Direct Sale
 - Wind Power Motors
 - Disk Drives
 - Electric Vehicles
 - Gyroscopes
 - MRI and Diagnostics
 - Scandium Metal for Alloying
 - Yttrium Oxide for Ceramics
 - YSZ Ceramics

REE Refining and Processing
Elements with Greatest Potential to Contribute to the Williston Basin Market
REE Refining and Processing

- Lignite at Margins
- REE Mixed Concentrate
 - Refining
 - HREE Concentrate
 - Medical/Defense Applications
 - SEG Concentrate
 - SEG Purification
 - LREE Concentrate
 - La/Ce Disposal or Sale
 - Scandium/Yttrium
 - Separation and Processing
 - Magnet REEs
 - Metallization and Alloying
 - Magnet Production
- Scandium Metal for Alloying
- Europium for Phosphors
- Gadolinium for X-Rays
- Scandium/Aluminum (Sc/Al) Alloys for Aerospace
- Yttrium Oxide for Ceramics
- YSZ Ceramics
- Direct Sale
 - Wind Power Motors
 - Disk Drives
 - Electric Vehicles
 - Gyroscopes
 - MRI and Diagnostics
 - Electric Vehicles
 - Disk Drives
 - Gyroscopes
 - MRI and Diagnostics
What Does the Refining Box Entail?

Lignite at Margins

REE Mixed Concentrate

Refining

Three Paths of Refining
(that have been materially researched)

Chemical

Electrical

Physical

Chemical refining is the dominant path to date.

This is typically solvent extraction.

Image credit: Elettronica Veneta Mixer-Settler
All rare earths are chemically similar.

Any method for separating REEs is extremely difficult.

Breakthroughs are reducing the process from hundreds or even thousands of steps to tens per element.
Products of Refining

Hundreds to Thousands of Steps

Purity: 99.9%+

Purity: 99.9%+

Purity: 26.7%

Neodymium Disk Magnets

Image credit: Metal Tech News

Image credit: Corsica LLC

Image credit: Amazon
CM Refining

This does not show all CMs that can be produced.

The CMs shown are likely some of the most valuable.
A Note on Purity
Semiconductor vs. REE purity

REEs typically need between 3N and 5N.

Semiconductors (Ge and Ga included) need typically 6N–12N, or up to 100,000,000 times more pure than REEs.

Purity Expressed as N

- $3N = 99.9\%$
- $5N = 99.999\%$
- $11N = 99.999999999\%$
- $12N = 99.9999999999\%$

To purify from 11N to 12N purity, remove 1 mg of impurities from a railcar of metal.
CM Products

Semiconductor Metals
(Ge and Ga)
- More than 90% import-reliant
- Key weakness identified by DOD suppliers

Battery Components
(cobalt and graphite)
- Primary constituents of both electrodes in lithium-ion battery
- Account for 54% of battery cost
Carbon Products

- By no means an exhaustive list
- CM-depleted lignite has unique properties
- Value vs. market size
Critical Minerals

CM-Depleted Lignite

Coal

Extraction Process

REE Products

CM Products

Electricity

CM-Depleted Lignite

Graphite

Graphene

Carbon-Rich Material

Smart Phones
Military Equipment
Farming

Medical Equipment
Kitchenware

Power Plants
Power Lines
Homes/Businesses

Phone Batteries
Car Batteries

Water Filters
Body Armor
Automotive Equipment
Summary of the Process

Many steps—and handoff points—from mined lignite to products.

Different purities and processing methods.

Many companies in many locations.

Shipping solids is easy over long distances.

Anytime a solid is produced, this could be another business.
Mixed REE Concentrate

- Lignite at Margins
 - Physical Processing
 - Chemical Processing
 - Overburden Rock and Clays
 - CM-Bearing PLS
 - CM-Depleted Lignite
 - Impurity Purification
 - Solution Impurities
 - MREO Concentrate
 - REE Separation
 - Other CBP/Uses
 - CM Refining
 - CM Separation
 - Wastewater

- CM-Depleted Lignite
- CM-Refining
- Other CBP/Uses
- CM Separation
- Wastewater
Diagram of REE refining and processing.
Institute for Energy Studies
University of North Dakota
2844 Campus Road, Stop 8153
Collaborative Energy Complex, Room 236
Grand Forks, ND 58202-8153

Nolan Theaker
Senior Research Manager – Critical Minerals
nolan.theaker@und.edu
(701) 777-6298
THANK YOU TO OUR SPONSORS!
Carbon Ore, Rare Earth, and Critical Minerals Initiative (CORE-CM)

U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL)-Led Program

• Catalyze economic growth.
• Job creation in energy communities.
• Energy communities not to be left behind.
• Domestic production of REEs and CMs.
• Strengthen our national economy and security.
13 CORE-CM Initiative Teams

US BASINS
1. Appalachian Basin, North
2. Appalachian Basin, Central
3. Appalachian Basin, South
4. San Juan River-Raton Basin
5. Illinois Basin
6. Williston Basin
7. Powder River Basin
8. Uinta Basin
9. Green River-Wind River Basin
10. Gulf Coast Basin
11. Alaska Basin
12. Cherokee-Forest City Basin
13. Mid-Appalachian Basin
Williston Basin CORE-CM Project Team

UND Energy & Environmental Research Center
UND Institute for Energy Studies
UND Nistler College of Business & Public Administration
Pacific Northwest National Laboratory
North Dakota State University
Montana Tech University
Critical Materials Institute (Ames)
Basin Electric Cooperative
BNI Energy
Current Lighting Solutions
General Atomics
Illinois Geological Survey CORE-CM Team
Lignite Energy Council
Minnkota Power Cooperative

NDIC Lignite Research Program
North American Coal
North Dakota Department of Commerce
North Dakota Geological Survey
North Dakota Governor’s Office
Northrup Grumman
Semplastics
South Dakota Geological Survey
U.S. Geological Survey
University of Alaska CORE-CM Team
University of Utah CORE-CM Team
Western Dakota Energy Association
Wyoming School of Energy Resources CORE-CM Team
ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. DE-FC26-05NT42592.

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
NDIC DISCLAIMER

This report was prepared by the EERC pursuant to an agreement partially funded by the Industrial Commission of North Dakota, and neither the EERC nor any of its subcontractors nor the North Dakota Industrial Commission nor any person acting on behalf of either:

(A) Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

(B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the North Dakota Industrial Commission. The views and opinions of authors expressed herein do not necessarily state or reflect those of the North Dakota Industrial Commission.
Watch Your Email for Future Invites!

Future Webinar Series Events
August 2023
November 2023

Visit undeerc.org/wb-corecm for more information.

Opening Reception
Monday, October 9, 2023

Symposium
Tuesday, October 10, 2023

Details coming soon.
Questions?