EERC. UNIVERSITYOF.

EERC. NORTH DAKOTA.

Energy & Environmental Research Center (EERC)

CRITICAL MINERALS: CREATING JOBS IN THE WILLISTON BASIN

September 6, 2023

© 2023 University of North Dakota Energy & Environmental Research Center.

THANK YOU TO OUR SPONSORS!

Industrial Commission of North Dakota Lignite Research, Development and Marketing Program

Current

Webinar Series Events

Critical Minerals: What, How, Why All the Hype?

9.21.2022

Today's Critical Mineral Technologies and How to Move Forward

11.30.2022

Why Do Critical Mineral Business in the Williston Basin? Our Strengths, Our Assets, Our Needs

1.11.2023

Critical Minerals from Lignite: The Process and Products

5.25.2023

Critical Minerals: Creating Jobs in the Williston Basin

Today

Defining Critical Minerals

Critical Minerals

Rare-Earth Elements (REEs)

- Not rare but found together
- Chemically similar and difficult to separate
- Each with a different use

EERC. U.S. DEPARTMENT OF ENERGY INDICAL NORTH DAKOTA

Critical Minerals (CMs)

- Catch-all term for the critical minerals that are not REEs
- No other common factor

Critical Minerals Play a Vital Role in Our Modern Economy and National Security

U.S. REE Suppliers

More than 80% of U.S. critical minerals are imported.

Elements with Greatest Potential to Contribute to the Williston Basin Market

ND Shales: Pierre, Niobrara, Upper and Lower Bakken Deep Unminable Coal Seams by In Situ Extraction

Existing Lignite Coal Mines

Coal Ash

Produced Water

Deep Unminable Coal Seams by In Situ Extraction Existing Lignite Coal Mines

Coal Ash

Produced Water ND Shales: Pierre, Niobrara, Upper and Lower Bakken

Existing Lignite Coal Mines

Coal Ash

Produced Water

ND Shales: Pierre, Niobrara, Upper and Lower Bakken Deep Unminable Coal Seams by In Situ Extraction

Coal Ash

Produced Water

ND Shales: Pierre, Niobrara, Upper and Lower Bakken

Deep Unminable Coal Seams by In Situ Extraction

Existing Lignite Coal Mines

Produced Water

Deep Unminable Coal Seams by In Situ Extraction

Existing Lignite Coal Mines

Business Findings and Takeaways

Regional industries

- End users of final products
- Defining business model

Summary of the Process for CM Production

Many steps—and handoff points—from mined lignite to products.

Different purities and processing methods.

Many companies in many locations.

Shipping solids is easy over long distances.

Anytime a solid is produced, this could be another business.

CREATING JOBS IN THE WILLISTON BASIN

Dean Bangsund Research Scientist Department of Agribusiness and Applied Economics North Dakota State University

Outline

Measuring industry employment

Potential statewide employment

Critical mineral opportunities in North Dakota

Workforce

Three Kinds of Economic Activity Measured

Direct

The first round of change in the economy (adding a job, increasing sales, etc.)

Indirect

What happens as an effect works its way through the economy

Induced

How consumers affect businesses

I've gotten a new job at the EERC! The EERC's new expenses include not just my salary but also the electricity I use, office supplies, equipment, etc.

I can buy more groceries. The grocery store receives an increase in income.

How Economic Activity Is Measured

Indirect Economic Effects: Business-to-Business Transactions

Local Car Dealer

Replace inventory (manufacturing/transportation) Interest (banking and finance) Advertising (business services) Electricity *(utilities)* Phone bill (communication) Office supplies (retail trade) Building upkeep (construction) Yard maintenance (services)

Each of these in turn can affect multiple additional economic sectors.

Induced Economic Effects: Consumer-to-Business Transactions

Limited to Backward Linkages

Limited to Backward Linkages

Constraints Ignored

- Permitting
- Markets and trade
- Policy
- Technology
- Business economics
- Private investment

Lignite Industry Aspects Ignored

- Effects on existing lignite mining operations
- Implications tied to future viability of coal-fired power plants

Opportunities in North Dakota

Payroll? Production Inputs?

Analysis traditionally would acquire data from industry partners.

A paucity of data necessitates using the **North American Industry Classification System** (NAICS) codes to select U.S. economic sectors for proxy data.

NAICS Codes

Payroll, 2021 average compensation rate/job/sector

Production inputs:

Hee	

How much?

Ratios of input purchases to employment per sector.

Where purchased?

Applied modified national average spending patterns to N.D. economy using low (20%) and high (80%) scenarios for instate sourcing of inputs.

Clarification

If an input purchase is required from an economic sector that does not exist in the N.D. economy, employment will be zero in either scenario.

Opportunities in North Dakota: Payroll and Production Inputs

Potential Statewide Employment

	Direct Jobs	Jobs from Purchases of Production Inputs				Direct Payroll	Direct, Indirect, Induced	
		Indirect		Induced		Induced		
		Low	High	Low	High		Low	High
Processing Nickel Ore	150	96	383	28	110	66	339	709
Primary Extraction Lignite Coal	110	30	120	9	36	53	202	319
Secondary Processing Lignite Coal	70	35	140	10	39	29	144	278
In Situ Lignite Coal	45	10	40	3	11	22	80	118
Graphite/Graphene	130	30	120	9	35	52	221	336

Does North Dakota Produce the Types of Production Inputs Required for CORE-CM Opportunities?

National Production Functions for Selected CORE-CM Opportunities (NAICS equivalent)									
	All Econom	ic Sectors*	Only Manufacturing Sectors						
	Total	Number Not Available in ND	Total	Number Not Available in ND					
Processing Nickel Ore (212230)	117	30	56	23					
Primary Extraction Mined Lignite Coal and In Situ Lignite (212290)	105	21	36	14					
Secondary Processing Mined Lignite Coal (331410)	101	19	29	13					
Graphite/Graphene (327992)	106	18	32	12					
Graphite/Graphene (335991)	84	18	32	17					

*National and North Dakota's economies based on 546 economic sectors.

Direct Labor Workforce Requirements

NAICS Classifications:

- 212230 (copper, nickel, lead, and zinc mining)
- 212290 (other metal ore mining)

Occupations

- 42% Construction and extraction
- 19% Installation, maintenance, and repair
- 10%
 Production
- 7% Transportation and material moving
- 6% Architecture and engineering
- 4% Life, physical, and social science
- 4% Management
- 3% Office and administrative support
- 3% Business and financial operations
- 1%
 Protective service
- 1% Computer and mathematical

Direct Labor Workforce Requirements

Occupations

- 50%
 Production
- 11% Transportation and material moving
- 8% Office and administrative support
- 7% Management
- 6% Architecture and engineering
- 6% Installation, maintenance, and repair
- 4% Business and financial operations
- 3% Sales and related
- 3% Construction and extraction
- 1% Computer and mathematical
- 1% Life, physical, and social science
- 0.2% Protective service (not shown)
- 0.2% Arts, design, entertainment, sports, and media (not shown)
- 0.02% Legal (not shown)

NAICS Classifications:

- 335991 (carbon and graphite product manufacturing
- 331410 (nonferrous metal smelting and refining [excluding aluminum])
- 327992 (ground or treated mineral and earth manufacturing)

CORE-CM Employment

Biggest variable/unknown: how well will North Dakota supply what the new projects (industry) require for production inputs.

Least variable: anticipated high-paying jobs will generate employment growth from induced economic output.

Potential wildcard: the link between the existing lignite industry and a critical minerals industry.

Food for thought: the presence of critical mineral projects creates new/expanded product development (forward linkages to other industries).

Takeaways

Opportunity is real

Unlikely to be transformative at the state level

Likely to be important at the local level

Avoid unrealistic thinking

Contact Information

Dean Bangsund Research Scientist

d.bangsund@ndsu.edu 701-730-0498

Department of Agribusiness and Applied Economics North Dakota State University

THANK YOU

THANK YOU TO OUR SPONSORS!

Industrial Commission of North Dakota Lignite Research, Development and Marketing Program

Current

Carbon Ore, Rare Earth, and Critical Minerals Initiative (CORE-CM) led by DOE NETL

Catalyze economic growth

Job creation in energy communities

Energy communities not to be left behind

Domestic production of **REEs and CMs**

Strengthen our national economy and security

13 CORE-CM Initiative Teams

US BASINS

- Appalachian Basin, North
 Appalachian Basin, Central
- 3 Appalachian Basin, South
- 4 San Juan River-Raton Basin
- 5 Illinois Basin
- 6 Williston Basin
- 7 Powder River Basin
- 8 Uinta Basin
- 9 Green River-Wind River Basin
- 10 Gulf Coast Basin
- 11 Alaska Basin
- 12 Cherokee-Forest City Basin
- 13 Mid-Appalachian Basin

Williston Basin CORE-CM Project Team

Project Team

UND Energy & Environmental Research Center UND College of Engineering & Mines Research Institute UND Nistler College of Business & Public Administration Pacific Northwest National Laboratory North Dakota State University Montana Tech University

Sponsors

U.S. DOE National Energy Technology Laboratory NDIC Lignite Research Program Basin Electric Cooperative BNI Energy Minnkota Power Cooperative North American Coal Critical Materials Institute (Ames) Current Lighting Solutions

In Collaboration With

Lignite Energy Council
North Dakota Department of Commerce
North Dakota Governor's Office
Semplastics
Western Dakota Energy Association
North Dakota Geological Survey
South Dakota Geological Survey
Illinois Geological Survey CORE-CM Team
University of Alaska CORE-CM Team
University of Utah CORE-CM Team
Wyoming School of Energy Resources CORE-CM Team

ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. DE-FC26-05NT42592.

DISCLAIMER

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NDIC DISCLAIMER

This report was prepared by the EERC pursuant to an agreement partially funded by the Industrial Commission of North Dakota, and neither the EERC nor any of its subcontractors nor the North Dakota Industrial Commission nor any person acting on behalf of either:

- (A) Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- (B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the North Dakota Industrial Commission. The views and opinions of authors expressed herein do not necessarily state or reflect those of the North Dakota Industrial Commission.

October-Bismarck

Keynote Speaker: Dr. Jessica Mullen U.S. Department of Energy National Energy Technology Laboratory

Scan QR code or visit crees-wb-2023.eventbrite.com

Opening Reception Monday, October 9, 2023 5:30–7:30 p.m. Stonehome Brewing Company 1601 North 12th Street

Symposium

Tuesday, October 10, 2023 9:00 a.m. – 4:00 p.m. North Dakota's Gateway to Science 1600 Canary Avenue

Coming in 2024

Learning More

Visit the Williston Basin CORE-CM website: <u>undeerc.org/research/projects/wb-corecm.html</u>

Information about the project

Information about critical minerals

Revisit past webinars

Any questions?

20

EERC. UNIVERSITYOF.